If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+80+4
We move all terms to the left:
0-(-16t^2+80+4)=0
We add all the numbers together, and all the variables
-(-16t^2+80+4)=0
We get rid of parentheses
16t^2-80-4=0
We add all the numbers together, and all the variables
16t^2-84=0
a = 16; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·16·(-84)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{21}}{2*16}=\frac{0-16\sqrt{21}}{32} =-\frac{16\sqrt{21}}{32} =-\frac{\sqrt{21}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{21}}{2*16}=\frac{0+16\sqrt{21}}{32} =\frac{16\sqrt{21}}{32} =\frac{\sqrt{21}}{2} $
| -4(-x+12)=-6x-98 | | -177=-10z+3 | | 4x+12+20=180 | | 82=-9x+1 | | g(-5)=1/2(-5)^2-5 | | 10=-10-10k | | -3=n+2/2 | | 10+n/10=-1 | | p-70/9=2 | | -1=-10+m/15 | | 2k+0.5=5 | | 557.02=240=1.21x | | 2x^2+6x+72=180 | | 123=3x+49.5 | | -8+b/3=-5 | | 6=2r-17 | | x=10,2x+3= | | 483x=8 | | 5x-55-2x=35 | | 2m-3=6/m | | 0.8h-1.9h+1.06=1.78-0.8h | | -2(c-4)=16 | | 4(9x+6)=36x−7 | | -2-u=7 | | x=15,2x+3= | | 3(2x+4)-2(x+1)=x-3 | | -5=-3+p/7 | | G(n)=130-15n | | F(n)=130-15n | | 36-3e=48 | | 3a=2a+10+12 | | v+21/v=-10 |